Engineering Dynamic Cyber-Physical Spaces

Presenter: Christos Tsigkanos
Date: 19 September 2019

Abstract

Computing and communication capabilities are increasingly being embedded into physical spaces blurring the boundary between computational and physical worlds; typically, this is the case in modern cyber-physical or internet-of-things (IoT) systems. Conceptually, such composite environments can be abstracted into a topological model where computational and physical entities are connected in a graph structure, yielding a cyber-physical space. Like any other software-intensive system, such a space is highly dynamic and typically undergoes continuous change - it is evolving. This brings a manifold of challenges as dynamics may affect e.g. safety, security, or reliability requirements. Modelling space and its dynamics as well as supporting formal reasoning about various properties of an evolving space, are crucial prerequisites for engineering dependable space-intensive systems, e.g. to assure requirements satisfaction or to trigger correct adaptation.

This talk will show an avenue for research which can be characterized as rethinking spatial environments from a software engineering perspective -- in both design and operation aspects. Regarding design, we will see how domain descriptions can give rise to models amenable to automated analyses of dynamic behaviours on spaces populated with humans, robots, or mobile devices. Analysis amounts to assessing if some collective behaviour that is highly space-dependent, violates certain requirements that the overall system should exhibit. Regarding runtime, we will consider supporting analyses on the cloud on behalf of resource-constrained and spatially-distributed IoT devices. We will discuss how spatial verification processes can be integrated in the service layer of an IoT-cloud architecture based on microservices, and what tradeoffs emerge across different deployment options.

Christos Tsigkanos is university assistant at the Technical University of Vienna. Previously, he was post-doctoral researcher at Politecnico di Milano, Italy where he received (2017) his PhD defending a thesis entitled ”Modelling and Verification of Evolving Cyber-Physical Spaces” (advisor prof. Carlo Ghezzi). His research interests lie in the intersection of dependable systems and formal aspects of software engineering, and include security and privacy in distributed, self-adaptive and cyber-physical systems, requirements engineering and formal verification.